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Abstract

Demographic analysis of data on births, deaths, and migration and coverage measurement surveys
that use capture-recapture methods have both been used to assess US Census counts. These approaches
have established that unadjusted Census counts are seriously flawed for groups such as young and middle-
aged African-American men. There is considerable interest in methods that combine information from
the Census, coverage measurement surveys and demographic information to improve Census estimates
of the population. This article describes a number of models that have been proposed to accomplish this
synthesis when the demographic information is in the form of sex ratios stratified by age and race. A
key difficulty is that methods for combining information require modeling assumptions that are difficult
to assess based on fit to the data. We propose some general principles for aiding the choice among
alternative models. We then pick a particular model based on these principles, and imbed it within a
more comprehensive Bayesian model for counts in poststrata of the population. The model is applied
to data for African-Americans aged 30-49 from the 1990 Census, and results compared with those from
existing methods.

Keywords: Post-enumeration survey; model selection; Gibbs sampling; posterior predictive distribu-
tion.

1. Introduction

Capture-recapture methods (Seber 1982) and demographic analysis (DA) of data on births, deaths, and
migration have been used to estimate the undercount in the US Census (Robinson et al. 1993). These
approaches have established that unadjusted Census counts are seriously flawed for groups such as young
and middle-aged African-American men. Demographic analysis indicates a 1990 male-female ratio among
African-Americans 30-40 of 0.91, whereas the published 1990 Census counts indicate a ratio of 0.86; with
imputations and erroneous enumerations removed, the 1990 Census identified only 0.78 males for every
female in this age-race category (Bell et al. 1996). Considerable effort has been devoted during the past
decade to develop methods that combine demographic information and capture-recapture analysis to improve
Census estimates of the population (Isaki and Schultz 1986; Fay, Passel and Robinson 1988; Choi, Steel, and
Skinner 1988; Das Gupta and Robinson 1990; Wolter 1990; Bell 1993; Bell et al. 1996). Two key difficulties
arise: DA typically provides estimates only for national levels of aggregation, and capture-recapture methods
require modeling assumptions that are difficult to assess based on fit to the data. In the remainder of this
section we overview existing research on these problems. Section 2 suggests principles for choosing among
capture-recapture models, and Section 3 imbeds these methods within a unified Bayesian model. Section 4
applies the results of Sections 2 and 3 to the US Census data for African-Americans 30-49. A more complete
description of our methods and results is available in Elliott and Little (1998).

Coverage Measurement Surveys

Since 1970, the Census has been supplemented by a coverage measurement survey (CMS), a detailed inde-
pendent enumeration of households in a probability sample of Census blocks conducted immediately after
the actual Census. In 1990, this CMS, termed the Post Enumeration Survey or PES, was conducted in
July-September 1990, following the April-June 1990 data collection for the Census. To combine the Census
and CMS data, imputations and erroneous enumerations were removed from the Census count, while per-
sons in the CMS were cross-checked against Census records within the sample Census blocks and a set of
surrounding blocks and assigned to either an In-Census or Out-Census category. After inflating the counts



Table 1: Observed data and associated underlying population parameters from Census and Coverage Mea-
surement Survey: y3,; and y;,, are estimated counts of individuals in and out of the Census on the basis of
the CMS follow-up; 27, is the Census count, minus imputations and an estimate of erroneous enumerations;
1/),52»]» is the population that would reside in the ijth cell if the CMS had been a complete census. (stratum=k;
gender=5).

Observed Data Underlying Parameters
CMS CMS
In Out In Out
Census  In 1‘11511 2151. 1/’1511 1/’1510 1/’151.
Out 1‘11501 1/’1501 1/’1500 1/’150.
915.1 1/’15.1 1/’15.0 1/’15..

in the sampled blocks by the inverse of their probability of selection, a 2 x 2 table (In-Out Census; In-Out
CMS) was formed for males and females (S = M, F') in each of K post-strata, typically defined by geographic
area and owner vs. renter status within age-by-race groupings (see Table 1). Table 1 also gives the “true”
but unknown population counts in the kth poststratum for gender S that would be obtained if the CMS
had itself been a census and if those missed in both the Census and CMS were known. These population
quantities ¢ = {1/)25]/,C :1=0,1;7=0,1;5 = M, F'}, where i is the Census enumeration status and j the CMS
enumeration status in the kth poststratum (1 if included, 0 otherwise), are considered unknown parameters,
and are estimated by the statistical methods to be described.

Model constraints

A fundamental problem (Bell 1993) is that Table 1 provides only 3 data elements to estimate the 4 pa-
rameters. Thus constraints must be placed on the parameters to obtain unique parameter estimates. One
such constraint is to assume independence of capture and recapture (ICR), that is that the odds ratios for
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enumeration in the Census and the CMS for sex S in poststratum k, 07 = Ysllk
kal/kaD

and Deming 1949).

, are all equal to 1 (Sekar
ICR: 07 =1 for all k, 5. (1)

As Sekar and Deming point out, the ICR assumption can be violated when either the probabilities of capture
and recapture are unequal or when they differ across individuals (unobserved heterogeneity), leading to
“correlation bias”. Correlation bias tends to lead to an underestimate the undercount, since if it 1s due to
unobserved heterogeneity then 85 > 1, leading to an underestimation of ¥3,,. This form of bias is indicated
by a pattern of implausibly low values of the male-female sex ratio, a value considered highly reliable by
demographers (Robinson 1995), when the 1990 Census estimates are adjusted using the ICR model.

To correct for this bias, several models have been suggested that attribute the low observed male-female
ratio to an undercount of males rather than an overcount of females. The estimated number of males in the
population is increased to match the overall male-female ratio (p = ¥ /4T") from DA. The additional males
are distributed over the post-strata using a method based on the assumptions of the model. In practice p is
estimated from DA within an age-race group, so the models are applied separately to each age-race grouping.
In particular, Wolter (1990) assumed that the odds ratios for enumeration in the Census and the CMS are
constant for males across the strata and constant and equal to 1 for females. We call this the fixed odds-ratio

(FOR) model:
FOR: 0¥ = 6™ and 6f =1 for all k. (2)

Bell (1993) and Das Gupta (Bell et al. 1996) extend Wolter’s approach to four alternative models, all of
which assume independence of capture-recapture for females (HkF =1 for all k) and adjust fitted counts so
that their sum across poststrata matches the sex ratio p from DA. These models all add a single parameter



to the ICR model; all are “saturated” and provide an equally good fit to the data. Thus it is difficult to
choose among alternative models, although they can yield adjustments with non-trivial differences. Another
problem posed by these models is the existence of negative estimates of persons included in the Census but
missed in the CMS,/(ﬁ)tained by subtracting those estimated to have been in both the CMS and Census from

the Census total (1/)1510 = z,fL — y,fn). Also unclear 1s how to account for uncertainty in the DA sex ratios.
We consider each of these problems below, beginning with the problem of choosing among models.

2. Principles for Choosing Between Models

To simplify and reduce the scope of the model selection problem, we propose 6 principles for guiding the
selection of a model for combining CMS and DA information:

1. PLAUSIBILITY: The model should imply a plausible description of Census behavior.
e Assessment of this issue requires expert opinion and careful exposition of the model assumptions.
2. FIT: The model should minimize contradiction with available data.

e The “no adjustment” model (that is, doing nothing) clearly fails this test, since it ignores the
sizable body of evidence of differential undercount across demographic groups. A number of
alternative models (including those considered by Bell and Das Gupta) provide better fits and
hence should be preferred under this principle.

3. PREDICTION: The model should provide plausible predictions of key unobserved quantities, e.g.
undercount rates should be within limits deemed reasonable.

e Models may yield implausible outlying predictors for certain cells. While a consistent pattern of
unlikely predictions is evidence that the model is not appropriate, in 1solated cases modifications
that control the extent of adjustments might be considered. These may be achieved informally
by ad-hoc adjustments, or more formally by a Bayesian analysis based on prior distributions that
limit the size of the adjustments.

4. ICR INCLUSION: The model should include the ICR model, which assumes zero correlation bias
within poststrata, as a particular case.

e It is harder to defend this principle as necessary on scientific grounds, but given the widespread
adoption of the ICR model for CMS problems, it seems reasonable to restrict attention to the
class of models that include that model for a particular choice of parameters. It is also in keeping
with statistical parsimony: without evidence of correlation bias we would accept the independence
model.

5. STABILITY: If alternative competing models are not distinguished on the basis of 1-4, models that
yvield more stable estimates of key estimands should be favored over models that yield less stable
estimates.

e If little can be concluded about the relative biases of competing models, then a model that yields
estimates with reduced variance is to be preferred.

6. CONSERVATISM: If alternative competing models are not distinguished on the basis of 1-5, then
models that are more conservative with respect to undercount adjustment should be favored over
models that are less conservative.

e Given the sentiment against any type of adjustment in some quarters, the goal of adjusting
the Census counts to the minimal extent needed for consistency with DA and CMS data seems
appropriate.



Of the six models considered by Wolter (1990), Bell (1993), and Das Gupta (1996), the fixed relative-risk
(FRR) model that assumes a constant relative risk for enumeration in the Census and CMS for males appears
to best meet the criteria considered:

M M
FRR: vY = Viv/ Vi =M for all k. (3)

Yior/Uio.
In particular, only it and the FOR model include the ICR model as a special case. In addition, the FRR
model appears somewhat more stable than the FOR model (Bell 1993). Hence we highlight this model in the
remainder of our paper, although this choice might be changed by more exhaustive analyses. Our conclusions

appear consistent with the comments in Bell (1993), although he is less sanguine in terms of final model
choice.

3. A Fixed Relative-Risk Model Incorporating CMS and DA Data

This section outlines a comprehensive model for the underlying 8 K’ population counts in the CMS tables that
incorporates information about sex ratios from DA and eases prior specifications. For the FRR model (3),
we reparameterize the eight population counts in poststratum k, ¥ = {1/)25]/1C :1=0,1;7=0,1;5= M, F},
as 1/)2- = (’l/)ka Pk, 6[{;‘4’ 6[5a i;wa ga 7]{;‘4’ 7]5) where:

1. ¥, the total population count in poststratum k.

2. pp = %f, the sex ratio (1/)?4 + 1/JkF =)

=

3. 67 = w’gl' , the Census undercount proportion for sex S
k..
s

4. qbf = Z’j%, the proportion of Census cases enumerated in the CMS for sex S
k1.
= =

5. 'y}f = %, the relative proportion of Census and non-Census cases enumerated in the CMS for
k01 k0.

sex

The above parameterization is particularly useful for the FRR model; other choices of parameterizations are
more natural for other models. We then select the following independent priors for each parameter:

e p(¢y ) o< 1, a flat prior corresponding to our lack of knowledge about the total population counts in
each poststratum.

e p; ~ N(p,0?) subject to the constraint that >, wrpr = p where wy = Zwklb and p is the DA-
% k..

estimated nationwide sex ratio. Variation in the sex ratios across poststrata is modeled via the param-
eter o2. The normal distribution is chosen for computational convenience.

e 67 ~ BETA(a®,b°) and ¢3 ~ BETA(c®,d%), beta priors that smooth the proportion of Census un-
dercounts and the proportion of Census cases enumerated in the CMS across poststrata independently
for each sex and provide a support of [0,1] for these proportions.

. 7116\4 =M ~ GAMM A(a, B) for all k; ’y}: = 1 for all k. These priors assume that the relative
proportion of Census and non-Census cases enumerated in the CMS for each poststratum 1s a constant
across poststrata (likely greater than 1) for all males and is constant and known to be equal to 1 (under
the independence assumption) for females.



In addition, we assume that

i 1‘11511 | 1/’1511 ~ N(1/’l§11a (Tksn 2)
i 1‘11501 | 1/’1501 ~ N(1/’l§01a (TkSm 2)

i 2151. | 1/’151. ~ N(¢l§1.’ (U%)Z)

)
)

where y,fn, y,fm, and z,fL are all independent.

The mode of the posterior distribution of {¢;} might be computed by a numerical optimizing algorithm.
However, given the large number of parameters relative to the data and presence of peaks near the boundary
of support for qbf in cells where z,fL < y,fn, Newton-Raphson and Fisher scoring algorithm performed poorly.
Hence we used Gibbs sampling (Gelfand and Smith 1990; Gelman and Rubin 1992; Smith and Roberts 1993)
to draw estimates of the population parameters from their joint posterior distribution. The weighted sum of
within-stratum sex ratio estimates was constrained to equal “known” nationwide sex ratio via the SWEEP
operator (Goodnight 1979; Little and Rubin 1987). Use of the Gibbs sampling approach estimates the entire
posterior distribution and thus allows for greater flexibility in terms of point estimation and inference. We
focus primarily on posterior means, easily estimated as the mean of the parameter draws after an initial
“burn-in”.

The variances (75,1)%, (755,)%, and (ug, )? are treated as known. The beta hyperparameters a®,b°, ¢*, d°

are estimated using Gibbs sampling assuming a uniform hyperprior distribution. Since little information is
available to estimate the gamma hyperparameters o and 3, we chose the “flattest” prior for which P(v €
[0.5,2.0]) = 0.95; this yielded o« = 9 and # = 0.1306. Rather than attempting to find an empirical Bayes
estimate of 02, we set ¢ = 1, which essentially allows the poststratum sex ratios to vary freely, subject to
the constraint that they yield the DA estimate when aggregated.

4. Application to US Census Data

We now apply the methods described above to the 1990 Census for African-Americans aged 30-49, stratified
into 12 poststrata. Poststrata 1 through 6 include those residing in owner-occupied dwelling units in urban
area 250,000/4 in the Northeast (1), South (2), Midwest (3), and West (4); owners in urban areas under
250,000 (5); and owners in non-urban areas (6). Poststrata 7 through 12 include those residing in non-owner
(rental) dwelling units in the corresponding geographic areas. Five chains consisting of 1,000 draws of the
Gibbs sampler were run from different starting points, with the first 200 discarded as an initial “burn-in”.
The Gelman-Rubin test of convergence (Gelman et al. 1995), which measures the ratio of the total posterior

variance to the mean within-chain variance, indicated an acceptable degree of convergence (max \/E = 1.07).

Figure 1 and Table 2 indicate the differences between the population estimates in each poststratum for
African-Americans 30-49 using (a) Census estimates (minus imputations and estimates of erroneous enu-
merations); (b) maximum likelihood estimates for the ICR model; (¢) maximum likelihood estimates for
the FRR model adjusted to DA sex ratios using Bell’s (1993) approach; and (d) posterior means under the
model of Section 3. Note that estimates for (b) and (¢) are identical for females.

Several key observations can be derived from Figure 1:
e The undercount appears to be greatest, as might be expected, in Poststrata 7 through 10 (renters
residing in urban area of 250,000/+).

e The FRR models provide larger estimates than the ICR models because these models adjust for cor-
relation bias by forcing the total male/female ratio to equal or approximate DA sex ratio estimates.



(Recall that females are assumed to have zero correlation bias.) This bias appears to be associated,
again as one might expect, with the undercount itself, appearing larger in the rental poststrata than
in the owner poststrata.

e The estimates derived for males from the Bayesian approach of Section 3 under the FRR assumption
generally fall between the maximum likelihood estimates of Bell (1993) for the FRR model and the MLE
ICR estimates. A discrepancy between the MLE and Bayesian FRR model appears in Poststratum
10 for men (non-owners in Western urban areas). This can be explained in part by the fact that
this poststratum (a) has the largest proportion of males as estimated by the post-CMS-adjusted data
(SR=1.030 under maximum likelihood for the ICR model and SR=1.170 under maximum likelihood
for the FRR model), and (b) has apparently poor Census coverage as estimated by the CMS: this
poststratum contained the smallest proportion of the CMS that were identified in the Census and third-
smallest proportion of those in the Census who were estimated to have been in the CMS. However, this
estimate of poor coverage is based on relatively unstable CMS estimates (the largest CV for y%l and
third-largest CV for y%l). Thus the Bayesian approach identifies and “corrects” to some degree this
potential outlier, increasing its estimated coverage toward the all-strata mean. Similiar discrepancies
in Stratum 6 and 7 result in part from large CVs from the CMS estimates that allow the posterior
results to be pulled toward the ICR estimates.

o Female estimates under the Bayes FRR models are somewhat smaller on average than under the MLE
FRR model, possibly a consequence of the smoothing of the sex ratios. Exceptions are Strata 4 and
11, where the removal of the large negative cells increases the estimate of the female population over
the MLE estimates.

The total undercount for African-American women 30-49 when compared against the total Census estimate
for African-Americans 30-49 is 1.7% under the ICR/MLE FRR model and 0.5% under the Bayesian FRR
model. The undercount for African-American men 30-49 is estimated to be -1.1% under the ICR model,
6.7% under the FRR model using Bell’s 1993 maximum likelihood approach, and 5.4% under the Bayes FRR
model. The total undercount is 0.4% for the ICR model, 4.1% for FRR maximum likelihood, and 2.9% for
FRR Bayes. Thus the smoothing has added an element of conservatism (see Principle 6 in Section 2) that
we think is an advantage of our approach. Note that the undercount here and below is compared to the
published US Census estimates for African-American women 30-49 (4,484,162) and men 30-49 (3,859,304)
(US Census Bureau 1991), not to the adjusted estimates minus imputations and erroneous enumerations
shown in Figure 1.

Inference

Inferences about the posterior distribution of parameters of interest can also be easily obtained from the
distribution of the Gibbs draws. For example, an estimate of the 95% posterior probability interval (the
Bayesian equivalent of a confidence interval) can be obtained by noting the 100th and 3900th smallest of the
4000 draws from the posterior distribution. Table 3 gives the mean and 95% posterior probability intervals
(PPIs) for the total population in each of the 12 poststrata for African-Americans 30-49 under the Bayes
FRR model, together with the adjusted Census estimate and Bell’s (1993) maximum likelihood estimates
under the ICR and FRR models. The 95% PPI for the undercount for females is (-1.8% - 2.6%); for males
is (3.2% - 7.5%); and overall is (0.6%-5.2%).

Model fit: Negative Out CMS-In Census Cell Values

If matches from the CMS were overstated, erroneous enumerations from the Census were overstated, or some
other source of bias is present, then the negative Out CMS-In Census cell values obtained by subtracting the
In CMS-In Census population estimate from the adjusted Census estimates may be due to bias rather than
sampling variance. Hence the negative Out CMS-In Census counts potentially provide evidence of lack of



Figure 1: Total Estimated Population by Gender and Stratum Under Census and ICR, FRR MLE, and FRR
Bayes Models.

Table 2: Estimates of total population within each poststratum (in thousands): Census; ICR MLE; FRR
MLE; Bayes FRR Posterior Mean and 95% Posterior Probability Interval under Bayes FRR with uncon-
strained SR. PS = Poststratum

Census ICR  FRR Bayes Bayes FRR

PS | Estimate MLE MLE FRR 95% PPI

1 455 515 527 523 (498 - 550)
2 1008 1097 1120 1109 (1079 - 1142)
3 568 623 637 629 (610 - 650)
4 260 304 314 326 (278 - 384)
5 677 734 750 748 (716 - 781)
6 598 687 708 676 (614 - 739)
7 751 1001 1058 1015 (922 - 1128)
8 1005 1221 1282 1278 (1191 - 1381)

9 562 692 728 725 (682 - 774)
10 373 468 500 479 (419 - 555)
11 714 820 851 863 (821 - 909)
12 186 216 224 214 (192 - 242)




Figure 2: Posterior Predictive Draws of Census Estimates Minus In Census-In PES Estimates: Females
(Data given by Tick Marks).

fit of the data to the model. To examine this possibility, we utilize posterior predictive distributions (PPD)
(Gelman et al. 1995).

Classic p-values represent the probability under the model that the observed statistics T'(y; 6 = é) will
be less than (or greater than) the values of the statistic that would be seen in repeated observations:
P(T(y) < T(y™r) | é) The PPD p-value represents the probability that the observed statistic T'(y, )
is more extreme than replicated statistic, conditional on the observed data: P(T'(y,0) < T(y"*",0) | y).
PPD p-values can be obtained from the draws of § generated by the Gibbs sampler; y"*F can be drawn from
fly | 07°F), and T(y"¢?,67¢P) compared with T'(y, #"°"). Examining the histograms for females in Figure 2
shows that the only stratum for which the observed data appear in the tail of the predictive distributions
is poststratum 4; the PPD p-value is 0.054. The smallest PPD p-value for males is 0.070, also in stratum
4. Overall then, the model fit is reasonably adequate for African-Americans 30-49, although there is modest
evidence (made more modest by the number of comparisons) that the negative cells in Stratum 4 may be
due to some form of bias unaccounted for in the model, either because of overestimation of the proportion
of CMS subjects who were also captured in the Census or of overestimation of erroneous enumerations and
imputations in the Census data.

5. Discussion

In this paper we summarize methods proposed for incorporating post-Census CMS and demographic data into
estimates of Census subpopulation counts. All methods face the difficulty that the underlying cell counts in
the 2 x 2 Census-CMS poststratification tables are unidentifiable unless a model is posited for the population.
The simplifying assumption of independence — that the probabilities of capture and recapture are independent
and homogeneous across the population — leads to ratios of males to females that are typically lower than
estimates from demographic analysis. Numerous plausible models can be suggested that incorporate this



sex ratio data, all providing perfect fits to the data. We have suggested six principles — PLAUSIBILITY,
FIT, PREDICTION, INDEPENDENCE MODEL INCLUSION, STABILITY, and CONSERVATISM - to
help choose among the models. Use of these principles suggests a fixed relative-risk for enumeration in the
CMS and Census (FRR) model (see (3)) as a leading candidate model for selection.

Beyond these qualitative discussions, we have described a more comprehensive statistical model that, through
judicious choice of parameterization and prior distributions, eliminates negative cell estimates from the In
Census-Out CMS cell of the poststratification tables and reduces outlying predictions of undercount rates.
Applying this approach to the FRR model using 1990 Census data for African-Americans aged 30-49 yielded
estimates of undercount of 0.5% for women, 5.4% for men, and 2.9% overall in this race-age category, with
corresponding 95% posterior undercount intervals of (-1.8% - 2.6%), (3.2% - 7.5%), and (0.6%-5.2%). The
estimates 1990 Census undercount among African-Americans aged 30-49 using the FRR MLEs (Bell 1993)
are 1.7% for women, 6.7% for men, and 4.1% overall; no confidence intervals are easily available. Our
approach identifies potential outliers in the poststrata tables and reduces their impact on post-CMS total
population estimates. This also has the effect of adjusting to the minimum extent necessary to be consistent
with the data, consistent with our CONSERVATISM principle. Use of posterior predicitive distributions
also indicates that the large negative raw In Census-Out CMS cells are consistent with variance in CMS
enumeration or Census estimates.

Many extensions of the methods and models described could be envisaged. One immediate extension would
be to introduce a prior for p to account for known uncertainty in the DA-estimated nationwide sex ratio.
Also, the estimates of variability in the CMS and Census data are treated as fixed; prior distributions
could be assumed to estimate any uncertainty in their values. Additional demographic measures could be
incorporated in our model through careful choice of parameterizations. Prior means for the poststrata cell
data or sex ratios could be regressed on poststratum characteristics to further reduce the dimensionality
of the model. Alternatives could be examined to the underlying assumption that deviations from the ICR
model are confined to males.

One criticism of our proposed approach is that it is explicitly Bayesian, and hence incorporates subjective
elements through the choices of model and prior. However, every method of modern Census enumeration
aimed at getting counts of the full population requires subjective assumptions — including methods that
leave raw Census counts unadjusted. The Bayesian framework makes these assumptions explicit and open
to debate, rather than implicit in the estimation algorithm. A second criticism 1s that the computations are
complex, and simple transparent methods that are relatively easy to explain to lay audiences are preferable.
We too favor simplicity, but think a distinction needs to be made between the underlying assumptions of the
model, which are not particularly complex and are capable of being transmitted in non-technical terms, and
the algorithms used to simulate posterior distributions based on the model, which are very complex but need
not be understood by non-statistical stakeholders. More generally, complex micro-simulation and statistical
models with subjective assumptions underlie the interpretations of much data that are used to inform public
policy in the economic and health arenas.
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